Financial Instrument Pricing using C++

Part I: Using C++ for European Option Pricing and Sensitivities

Daniel Duffy

© Datasim Education BV 2003

1. Introduction and Objectives

In this article we give an overview of how to apply the object-oriented language C++ to the problem of pricing a class of plain vanilla options. In particular, we show how this language and its powerful object-oriented and generic features allow us to create robust and flexible applications. In order to convince our readership that C++ is a suitable environment in which to code pricing formulae we concentrate on a specific example, namely the problem of pricing plain vanilla options on shares, commodities, futures and currencies. Furthermore, we are interested in seeing how option sensitivities (such as delta, gamma and theta) are implemented in C++ (see Haug (1998) for the source for the test case in this article).

The C++ language was born sometime around 1980. Its inventor was Dr. Bjarne Stroustrup, a researcher at AT&T labs. Since then the language has become one of the major programming languages and it is being used in many business, industrial and scientific domains (see Stroustrup 1997). C++ has its roots in the C language and it supports the so-called object-oriented paradigm. One of the central features of this paradigm is encapsulation. This is the ability to group data and its related functionality into one coherent whole that we call a class. For example (and this is the test case in this article), a plain vanilla option has data for strike price, expiry data and so on while there are functions for calculation of its price and sensitivities. Encapsulation is very powerful and it helps the developer to integrate related data and functionality. It is safe to say that C++ is the language of choice for many applications. We hope to see it being used more for financial engineering applications in the coming years.

Encapsulation is not the only feature in C++ that makes it a great language for software development in financial engineering. The current article deals with one particular example, namely creating C++ classes for plain vanilla options. We have applied the object-oriented paradigm and C++ to analyzing, designing and implementing other problems such as:

Finite difference methods for one-factor and two-factor models

Creating reusable foundation classes (statistics, trees, arrays and matrices)

C++ classes for binomial and trinomial trees

Monte Carlo simulations and parallel processing

These topics are outside the scope of the current article. Our objective here is to show how C++ is applied to a well-known and specific case in financial engineering. The example is a sanitized version of a much larger application and we have simplified it in order to make it self-contained (we provide all source code) and to keep the word length within bounds.

We do not assume that the reader has C++ experience but it is useful if she has some knowledge of the object-oriented paradigm. The code in this article can be re-entered by typing it over or the reader may contact the author at dduffy@datasim.nl for the source code.

2. An Overview of Object-Oriented Programming in C++

C++ is an example of a class-based object-oriented language. A class is a description of a group of related attributes and operations. In C++ we use the synonyms member data for attributes and member functions for operations. The member data and member functions are closely related. This feature is called encapsulation. In short, the class’ functions know which attributes to use. Let us take an example of a class implementing European options for stocks. The defining parameters for the European option will be designed in C++ as the following member data:

The stock price: S (or U depending on the underlying asset)

The volatility of the relative price change: (

The strike price: K

The time to expiration (in years): T

The risk-free interest rate: r

The cost-of-carry: b

The cost-of-carry for the Black-Scholes model has the same value as r but will have different values depending on the type of the underlying asset (for example, b = 0 for a futures option, see Haug 1998). We must define the data types of the member data. In this case we usually design them as double precision numbers although C++ allows us to design classes with so-called generic data types. This means that the member data can be customized with different specific data types depending on programmer preference.

Having defined the member data we now must decide what to do with the data. To this end, we introduce the concept of object (or instance of a class). A class is abstract in the sense that its member data have not been instantiated (they are just abstract descriptions) while an object is tangible and all its member data have been initialized. For example, the following assignments describe a European put option on an index (Haug 1998, page 15):

Underlying value (stock price index) U = 500

Volatility (= 0.15

Strike Price K = 490

Time to expiry T = 0.25 (3 months)

Risk-free interest rate r = 0.08

Cost-of-carry b = 0.03

Having discussed member data we now describe the functionality of classes and objects. In general, a class has member functions that model the lifecycle of an object. The main categories are:

Member functions (constructors) for creation of objects

Member functions that modify the member data (modifiers)

Member functions that perform calculations on the member data (selectors)

A member function (destructor) that deletes an object when no longer needed

There are various ways to create an object using constructors. For example, it is possible to create an instance of a European option class by initialising its member data. Two other constructors deserve mention: first, the default constructor creates an object with default member data values while the copy constructor creates an object as a deep copy of some other object. The destructor is the other extreme; it removes the object from memory when the object is no longer needed. We note that the names of constructors and destructor are the same as the name of their corresponding class.

C++ is based on the message-passing paradigm. This means that client code sends a message to an object by calling its member functions. For example, here is a piece of code that calculates the price of the index put option (we assume that the member data have been initialized):

EuropeanOption myOption (“P”, “Index Option”);

// …

double d = myOption.Price();

The value d will now contain the price of the put on the index option. Notice that there was no need to include parameters in the function Price() because of the tight binding between data and functions in C++. This is in contrast to procedural languages (such as Visual Basic 6.0 and Cobol) where the coupling between data and functions is looser.

3. The European Option in C++: the Details

We now dissect the code to show how we have used C++ for European options. In particular, there are three separate issues to be discussed in detail:

Designing the member functions in the class (section 3.1)

Implementing the bodies of each member function (section 3.2)

How client code uses the class (section 3.3)

Once the reader has understood this section she should then be in a position to appreciate how larger classes are created, tested and used in applications.

3.1 The Header File (Function Prototypes)

In general, all the code that is needed for a complete description of a class in C++ is contained in two files: first, the so-called header file (this section) that contains the formal descriptions of the member data and member functions in the class. Second, the so-called code file contains the implementation of each declared member function as seen in the header file. In other words, each member function declaration in the header file must have a corresponding entry in the code file.

We now discuss the details of the header file. First, there are two regions or parts called private and public parts, respectively. Both parts may contain member data and member functions. Members that are declared in the private part are not accessible from outside the class and may only be accessed by members in the class itself while public members may be accessed by any C++ code. In general, all data should be declared in the private part because this data tends to change; however, in this article we place the data that represents the structure of an option in the public area. This is for convenience only.

The public member functions in the options class can be categorised as follows (see the code below):

. Constructors: the different ways of creating instances of the option class

. Destructor: deleting an object when it is no longer needed

. Assignment operator: the ability to assign one object to another object (this is a ‘deep’ copy)

. ‘Core business’ functions: these are the functions that calculate the price and the delta for the option

. Other functions: for example, it is possible to switch a call option to a put option (and vice versa). Of course, the price and delta will be different!

The full interface for the option class is now given.

// EurpeanOption.hpp

#include <string>

class EuropeanOption

{

private:

void init();
// Initialise all default values

void copy(const EuropeanOption& o2);

// 'Kernel' functions for option calculations

double CallPrice() const;

double PutPrice() const;

double CallDelta() const;

double PutDelta() const;

public:

// Public member data for convenience only

double r;

// Interest rate

double sig;

// Volatility

double K;

// Strike price

double T;

// Expiry date

double U;

// Current underlying price

double b;

// Cost of carry

string optType;
// Option name (call, put)

public:

// Constructors

EuropeanOption();
 // Default call option

EuropeanOption(const EuropeanOption& option2);
// Copy constructor

EuropeanOption (const string& optionType);
// Create option type

// Destructor

virtual ~EuropeanOption();

// Assignment operator

EuropeanOption& operator = (const EuropeanOption& option2);

// Functions that calculate option price and (some) sensitivities

double Price() const;

double Delta() const;

// Modifier functions

void toggle();

// Change option type (C/P, P/C)

};

3.2 The Body of the Class

Having discussed the function prototypes for the options class, we need to describe how to fill in the body of the code for these functions. To this end, there are two major issues to be addressed. First, we must include the header file and the headers of libraries that are needed by the code. In this case, this leads to:

#include "EuropeanOption.hpp" // Declarations of functions

#include <math.h>

// For mathematical functions, e.g. exp()

Second, each function body must be specified. This is where C++ differs somewhat from non-object-oriented languages, namely function overloading. This means that it is possible to define several functions having the same name but differing only in the number and type of arguments. Furthermore, each function is ‘scoped’ or attached to its class by use of the so-called name resolution operator ‘::’ as shown in the following typical code:

double EuropeanOption::PutPrice() const

{

double tmp = sig * sqrt(T);

double d1 = (log(U/K) + (b+ (sig*sig)*0.5) * T)/ tmp;

double d2 = d1 - tmp;

return (K * exp(-r * T)* N(-d2)) - (U * exp((b-r)*T) * N(-d1));

}

This function calculates the price of a put option. Note that that the function returns a double value (the price of the put option) while all needed parameters (such as the volatility, interest rate and so on) are none other than the member data of the object that of course have already been initialised in a constructor!

We now give the full code of the code file.

// EurpeanOption.cpp

//

// Author: Daniel Duffy

//

// (C) Datasim Education BV 2003

//

#include "EuropeanOption.hpp" // Declarations of functions

#include <math.h>

// For mathematical functions, e.g. exp()

// Kernel Functions

double EuropeanOption::CallPrice() const

{

double tmp = sig * sqrt(T);

double d1 = (log(U/K) + (b+ (sig*sig)*0.5) * T)/ tmp;

double d2 = d1 - tmp;

return (U * exp((b-r)*T) * N(d1)) - (K * exp(-r * T)* N(d2));

}

double EuropeanOption::PutPrice() const

{

double tmp = sig * sqrt(T);

double d1 = (log(U/K) + (b+ (sig*sig)*0.5) * T)/ tmp;

double d2 = d1 - tmp;

return (K * exp(-r * T)* N(-d2)) - (U * exp((b-r)*T) * N(-d1));

}

double EuropeanOption::CallDelta() const

{

double tmp = sig * sqrt(T);

double d1 = (log(U/K) + (b+ (sig*sig)*0.5) * T)/ tmp;

return exp((b-r)*T) * N(d1);

}

double EuropeanOption::PutDelta() const

{

double tmp = sig * sqrt(T);

double d1 = (log(U/K) + (b+ (sig*sig)*0.5) * T)/ tmp;

return exp((b-r)*T) * (N(d1) - 1.0);

}

void EuropeanOption::init()

{ // Initialise all default values

// Default values

r = 0.08;

sig= 0.30;

K = 65.0;

T = 0.25;

U = 60.0;

// U == stock in this case

b = r;

// Black and Scholes stock option model (1973)

optType = "C";
// European Call Option (the default type)

}

void EuropeanOption::copy(const EuropeanOption& o2)

{

r
= o2.r;

sig = o2.sig;

K
= o2.K;

T
= o2.T;

U
= o2.U;

b
= o2.b;

optType = o2.optType;

}

EuropeanOption::EuropeanOption()

{ // Default call option

init();

}

EuropeanOption::EuropeanOption(const EuropeanOption& o2)

{ // Copy constructor

copy(o2);

}

EuropeanOption::EuropeanOption (const string& optionType)

{ // Create option type

init();

optType = optionType;

if (optType == "c")optType = "C";

}

EuropeanOption::~EuropeanOption()

{ // Destructor

}

EuropeanOption& EuropeanOption::operator = (const EuropeanOption& opt2)

{ // Assignment operator (deep copy)

if (this == &opt2) return *this;

copy (opt2);

return *this;

}

// Functions that calculate option price and sensitivities

double EuropeanOption::Price() const

{

if (optType == "C")return CallPrice();

else return PutPrice();

}

double EuropeanOption::Delta() const

{

if (optType == "C")return CallDelta();

else return PutDelta();

}

// Modifier functions

void EuropeanOption::toggle()

{ // Change option type (C/P, P/C)

if (optType == "C")optType = "P";

else optType = "C";

}

3.3 Using the Class

The code file is compiled and syntax errors should be resolved. We then need to write a program to test the class. The corresponding file is then compiled and linked with the other code to form an executable unit.

In this section we give an example of a test program. The object-oriented paradigm is based on the message-passing metaphor. Here we mean that client software sends messages to an object (by means of member function calls) by using the so-called dot notation. For example, to calculate the price of an existing option instance we code as follows:

double option_price = myOption.Price();

Here myOption is an object and Price() is one of its member functions.

The following code is an example of how to use the option class. Please note that we create four instances of the class EuropeanOption.

// TestEuropeanOption.cpp

//

// Test program for the solutions of European option pricing

// problems.

//

// (C) Datasim Education Technology BV 20003

//

#include "EuropeanOption.hpp"

#include <iostream>

// I/O stuff like cout, cin

int main()

{ // All options are European

// Call option on a stock

EuropeanOption callOption;

cout << "Call option on a stock: " << callOption.Price() << endl;

// Put option on a stock index

EuropeanOption indexOption;

indexOption.optType = "P";

indexOption.U = 100.0;

indexOption.K = 95.0;

indexOption.T = 0.5;

indexOption.r = 0.10;

indexOption.sig = 0.20;

double q = 0.05;

// Dividend yield

indexOption.b = indexOption.r - q;

cout << "Put option on index: " << indexOption.Price() << endl;

// Call and put options on a future

EuropeanOption futureOption;

futureOption.optType = "P";

futureOption.U = 19.0;

futureOption.K = 19.0;

futureOption.T = 0.75;

futureOption.r = 0.10;

futureOption.sig = 0.28;

futureOption.b = 0.0;

cout << "Put option on future: " << futureOption.Price() << endl;

// Now change over to a call on the option

futureOption.toggle();

cout << "Call on future: " << futureOption.Price() << endl;

return 0;

}

The output from this program is:

Call option on a stock: 2.13293

Put option on an index: 2.4648

Put option on a future: 1.70118

Call option on a future: 1.70118

These numbers are the same as found in the benchmark examples in Haug 1998.

4. Reusability Issues

Object-oriented technology is concerned with reusability. For example, the class just described can be used as a ‘building block’ for exotic options. We could create a class for executive options (Haug 1998, page 35) by inheriting it from EuropeanOption and adding a new member data representing the jump rate per year. We will need to implement the function Price() and Delta() but the amount of work is much less than if we had to write the code for executive options from scratch. Only the data and functions that differ from the ‘base’ EuropeanOption need to be written. A full treatment of this important topic is beyond the scope of this article.

Another area where reusability plays a role in financial engineering is when we create useful mathematical and statistical functions that are used by other classes. For example, the probability density function (pdf) and the cumulative density function (cdf) for the normal distribution spring to mind. The code in C++ for these functions is now given.

double n(double x)

{ // Gaussian (normal) distribution function

double A = 1.0/sqrt(2.0 * 3.1415);

return A * exp(-x*x*0.5);

}

double N(double x)

{ // The approximation to the cumulative normal distribution function

double a1 = 0.4361836;

double a2 = -0.1201676;

double a3 = 0.9372980;

double k = 1.0/(1.0 + (0.33267 * x));

if (x >= 0.0)

{

return 1.0 - n(x)* (a1*k + (a2*k*k) + (a3*k*k*k));

}

else

{

return 1.0 - N(-x);

}

}

5. Conclusions

We have given an overview of C++ for financial engineering by discussing a well-defined and self-contained example, namely the problem of calculating the price and delta of a standard European option. The main objective was to demonstrate to readers without object-oriented experience how to develop C++ classes for this particular domain.

References

Cox, J. C. and Rubinstein, M. (1985) Options Markets Prentice Hall, Englewood Cliffs, NJ

Duffy, Daniel Designing and Implementing Software for Financial Instrument Pricing (to appear)

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995) Design Patterns, Elements of Reusable Object-Oriented Software, Addison-Wesley Reading MA

Haug, E. (1998) The Complete Guide to Option Pricing Formulas McGraw-Hill New York

Musser, D.R. and Saini, A. (1996) STL Tutorial and Reference Guide, Addison-Wesley Reading MA

Stroustrup, Bjarne (1997) The C++ Programming Language (3rd Edition), Addison-Wesley Reading MA

Tavella, D. and Randall, C (2000) Pricing Financial Instruments, The Finite Difference Method John Wiley & Sons New York

About the author

Daniel Duffy works for Datasim, an Amsterdam-based trainer and software developer. He has been working in IT since 1979 and with object-oriented technology since 1987. He received his M.Sc. and Ph.d. theses (in numerical analysis) from Trinity College, Dublin. He can be contacted at dduffy@datasim.nl
